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• Image Classification

Computer Vision in Real World
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• Person Re-ID

Computer Vision in Real World
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• Scene Segmentation

Computer Vision in Real World
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• Medical Image Segmentation

Computer Vision in Real World
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Computer Vision in Real World
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Computer Vision in Real World
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How to learn a model robust to domain shift?



Domain Generalization (DG)



Domain Generalization (DG)
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• Train a model on single/multiple source domain(s) and then directly test on 
unseen target domains

• The target data are inaccessible during model training

Photo Art painting Cartoon Sketch

Source Domains Unseen Target Domain



Representation-learning based DG Methods

• Domain-invariant feature learning for DG
• Meta-learning for DG
• Self-supervised learning for DG
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MMD-AAE
(Li et al. CVPR’18)

MLDG
(Li et al. AAAI’18)

JiGen
(Carlucci et al. CVPR’19)



Data-generation based DG Methods

• Generate novel-domain images/features to expand the training domain and 
increase the diversity of training data distribution
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L2A-OT
(Zhou et al. ECCV’20)

DDAIG
(Zhou et al. AAAI’20)



Can we perform representation learning 
together with novel-domain augmentation in 

a mutually beneficial manner? 
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Method – Adversarial Teacher-Student Representation Learning
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• Integrate the two stages in an adversarial learning framework



Method
– Teacher-Student Domain Generalized Representation Learning
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• Minimize the discrepancy 
between Teacher and Student

• Distill the knowledge from Student
to progressively update Teacher via 
exponential moving average (EMA)



Method
– Novel Domain Augmentation
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• Maximize the discrepancy 
between augmented and existing 
domains 

• The semantic information is 
preserved via CE loss



Method – Adversarial Teacher-Student Representation Learning
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• During inference, we utilize the teacher network 𝐹! to derive domain 
generalized representations on target domains



• PACS dataset (Photo, Art painting, Cartoon, Sketch)
• leave-one-domain-out comparisons

Result 
– Quantitative Evaluation
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• Office-Home dataset (Art, Clipart, Product, Real World)
• leave-one-domain-out comparisons

Result 
– Quantitative Evaluation
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Result 
– Ablation Study 
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• Ablation studies on PACS using ResNet-50 as the backbone



Result 
– Ablation Study 

20

• Ablation studies on PACS using ResNet-50 as the backbone
• Change Augmenter 𝐺 to Random Aug. and Jigsaw puzzle



Result 
– Ablation Study 
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• Ablation studies on PACS using ResNet-50 as the backbone
• Change Augmenter 𝐺 to Random Aug. and Jigsaw puzzle
• Use Siamese archi., 𝐹! w/o EMA, and 𝐹! w/ EMA to extract representations



• t-SNE visualization on PACS with Photo as the unseen target domain
• The learned representations can be better semantically categorized by our method

Result 
– t-SNE visualization
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• PACS dataset
• Qualitative visualization & comparison with DDAIG (AAAI’20)

Result 
– Visualization
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Result 
– Generalization from A Single Source Domain
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• Quantitative comparisons on PACS & DomainNet datasets
• PACS: Photo as source domain; DomainNet: Real as source domain



Conclusion

• To directly deploy on target domains without the need of target data

• Not only derive the domain-invariant features across multiple source domains

• The novel-domain augmentation is designed to expand the training domain and 
diversify the training data distribution

• Our proposed approach does not require domain labels, thus can be applied on 
both multi-source and single-source DG settings
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Thanks for listening!
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