

Adversarial Teacher-Student Representation Learning for Domain Generalization

NeurIPS 2021 Spotlight Presentation

Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiau, Yu-Chiang Frank Wang

Vision and Learning Lab, National Taiwan University

ASUS Intelligent Cloud Services (AICS)

• Image Classification

• Person Re-ID

• Scene Segmentation

4

?

• Medical Image Segmentation

101 slices

159 slices

400 slices

400 slices

Image Classification (Li *et al.* ICCV'17)

Person Re-ID (Wang *et al.* arXiv'21)

Scene Segmentation (Shiau *et al.* ICIP'21)

Medical Image Segmentation (Liu *et al.* MICCAI'20)

Domain Generalization (DG)

Domain Generalization (DG)

- Train a model on single/multiple source domain(s) and then directly test on unseen target domains
- The target data are inaccessible during model training

Representation-learning based DG Methods

- Domain-invariant feature learning for DG
- Meta-learning for DG
- Self-supervised learning for DG

MMD-AAE (Li *et al.* CVPR'18) MLDG (Li *et al.* AAAI'18) JiGen (Carlucci *et al.* CVPR'19) 10

Data-generation based DG Methods

• Generate novel-domain images/features to expand the training domain and increase the diversity of training data distribution

DDAIG (Zhou *et al.* AAAI'20) L2A-OT (Zhou *et al.* ECCV'20) Can we perform *representation learning* together with *novel-domain augmentation* in a mutually beneficial manner?

Method – Adversarial Teacher-Student Representation Learning

• Integrate the two stages in an *adversarial learning* framework

Method

- Teacher-Student Domain Generalized Representation Learning

 Minimize the discrepancy between *Teacher* and *Student*

$$\min_{F_S} \mathcal{L}^F_{dis}(z, ilde{z}) = \left\|rac{z}{\left\|z
ight\|_2} - rac{ ilde{z}}{\left\| ilde{z}
ight\|_2}
ight\|_2^2$$

• Distill the knowledge from *Student* to progressively update *Teacher* via exponential moving average (EMA)

 $\theta_T \leftarrow \tau \theta_T + (1 - \tau) \theta_S$, where $\tau \in [0, 1)$

Method – Novel Domain Augmentation

 Maximize the discrepancy between augmented and existing domains

$$\max_{G} \mathcal{L}_{dis}^{G}(z, \tilde{z}) = \left[\left\| \frac{z}{\|z\|_{2}} - \frac{\tilde{z}}{\|\tilde{z}\|_{2}} \right\|_{2}^{2} - m \right]_{-}$$

• The semantic information is preserved via CE loss

 $\begin{array}{c} \text{Student} \\ \text{Augmenter} \quad \tilde{x} \\ \hline G \\ \hline G \\ \hline G \\ \hline F \\$

Novel Domain Augmentation

Method – Adversarial Teacher-Student Representation Learning

• During inference, we utilize the teacher network F_T to derive domain generalized representations on target domains

– Quantitative Evaluation

- PACS dataset (*Photo, Art painting, Cartoon, Sketch*)
- leave-one-domain-out comparisons

Target	DeepAll	MMD-	MLDG	JiGen	MetaReg	Epi-	MASF	EISNet	DMG	Borlino	DSON	RSC	Ours
	(baseline)	AAE [1]	[2]	[11]	[3]	FCR [4]	[5]	[12]	[37]	et al. [43]	[44]	[28]	
Photo	95.6	96.0	96.1	96.0	95.5	93.9	95.0	95.9	93.4	95.0	95.9	96.0	97.3 ± 0.3
Art painting	75.1	75.2	81.3	79.4	83.7	82.1	80.3	81.9	76.9	82.7	84.7	83.4	85.8 ± 0.6
Cartoon	74.2	72.7	77.2	75.3	77.2	77.0	77.2	76.4	80.4	78.0	77.7	80.3	80.7 ± 0.5
Sketch	68.4	64.2	72.3	71.4	70.3	73.0	71.7	74.3	75.2	81.6	82.2	80.9	77.3 ± 0.5
Average	78.3	77.0	81.8	80.5	81.7	81.5	81.1	82.2	81.5	84.3	85.1	85.2	85.3

			ResN	et-18				ResNet-50				
Target	DeepAll	CrossGrad	DDAIG	L2A-OT	MixStyle	Ours	DeepAll	CrossGrad	DDAIG	MixStyle	Ours	
-	(baseline)	[6]	[7]	[8]	[9]		(baseline)	[6]	[7]	[9]		
Photo	95.6	96.0	95.3	96.2	96.1	97.3 ± 0.3	94.8	97.8	95.7	98.0	98.9 ± 0.3	
Art painting	75.1	79.8	84.2	83.3	84.1	$\textbf{85.8}\pm0.6$	81.5	87.5	85.4	87.4	$\textbf{90.0} \pm 0.3$	
Cartoon	74.2	76.8	78.1	78.2	78.8	$\textbf{80.7} \pm 0.5$	78.6	80.7	78.5	83.3	$\textbf{83.5}\pm0.5$	
Sketch	68.4	70.2	74.7	73.6	75.9	$\textbf{77.3}\pm0.5$	69.7	73.9	80.0	78.5	$\textbf{80.0}\pm0.6$	
Average	78.3	80.7	83.1	82.8	83.7	85.3	81.2	85.7	84.9	86.8	88.1	

– Quantitative Evaluation

- Office-Home dataset (Art, Clipart, Product, Real World)
- leave-one-domain-out comparisons

Target	DeepAll	CCSA	MMD-	MLDG	D-SAM	JiGen	Borlino	DSON	RSC	Ours
	(baseline)	[45]	AAE [1]	[2]	[46]	[11]	et al. [43]	[44]	[28]	
Art	59.0	59.9	56.5	58.1	58.0	53.0	58.7	59.4	58.4	60.7 ± 0.5
Clipart	48.4	49.9	47.3	49.3	44.4	47.5	52.3	45.7	47.9	52.9 ± 0.3
Product	72.5	74.1	72.1	72.9	69.2	71.5	73.0	71.8	71.6	75.8 ± 0.1
Real world	75.5	75.7	74.8	74.7	71.5	72.8	75.0	74.7	74.5	77.2 ± 0.2
Average	63.9	64.9	62.7	63.8	60.8	61.2	64.8	62.9	63.1	66.7

			ResN	let-18		ResNet-50					
Target	DeepAll	CrossGrad	DDAIG	L2A-OT	MixStyle	Ours	DeepAll	CrossGrad	DDAIG	MixStyle	Ours
	(baseline)	[6]	[7]	[8]	[9]		(baseline)	[6]	[7]	[9]	
Art	59.0	58.4	59.2	60.6	58.7	60.7 ± 0.5	64.7	67.7	65.2	64.9	69.3 ± 0.2
Clipart	48.4	49.4	52.3	50.1	53.4	52.9 ± 0.3	58.8	57.7	59.2	58.8	$\textbf{60.1}\pm0.6$
Product	72.5	73.9	74.6	74.8	74.2	75.8 ± 0.1	77.9	79.1	77.7	78.3	$\textbf{81.5}\pm0.4$
Real world	75.5	75.8	76.0	73.0	75.9	$\textbf{77.2}\pm0.2$	79.0	80.4	76.7	78.7	$\textbf{82.1}\pm0.2$
Average	63.9	64.4	65.5	65.6	65.5	66.7	70.1	71.2	69.7	70.2	73.3

- Ablation Study
- Ablation studies on PACS using ResNet-50 as the backbone

Module	Method	Photo	Art painting	Cartoon	Sketch	Average
	DeepAll	94.8	81.5	78.6	69.7	81.2
Augmentation	Random Aug.	96.4	83.2	75.9	75.5	82.8
	Jigsaw puzzle	97.1	85.3	79.0	80.5	85.5
	Siamese archi.	98.3	87.5	79.0	80.5	85.8
Representation	F_S w/o EMA	98.2	86.4	80.1	74.7	84.9
	F_S w/ EMA	97.9	88.9	82.0	75.1	86.0
	Ours $(G + F_T)$	98.9	90.0	83.5	80.0	88.1

- Ablation Study
- Ablation studies on PACS using ResNet-50 as the backbone
 - Change Augmenter G to Random Aug. and Jigsaw puzzle

- Ablation Study
- Ablation studies on PACS using ResNet-50 as the backbone
 - Change Augmenter G to Random Aug. and Jigsaw puzzle
 - Use Siamese archi., F_S w/o EMA, and F_S w/ EMA to extract representations

Module	Method	Photo	Art painting	Cartoon	Sketch	Average
	DeepAll	94.8	81.5	78.6	69.7	81.2
Augmentation	Random Aug.	96.4	83.2	75.9	75.5	82.8
	Jigsaw puzzle	97.1	85.3	79.0	80.5	85.5
	Siamese archi.	98.3	87.5	79.0	80.5	85.8
Representation	F_S w/o EMA	98.2	86.4	80.1	74.7	84.9
0	F_S w/ EMA	97.9	88.9	82.0	75.1	86.0
	Ours $(G + F_T)$	98.9	90.0	83.5	80.0	88.1

Result – t-SNE visualization

- t-SNE visualization on PACS with Photo as the unseen target domain
- The learned representations can be better semantically categorized by our method

- Visualization

- PACS dataset
- Qualitative visualization & comparison with DDAIG (AAAI'20)

- Generalization from A Single Source Domain
- Quantitative comparisons on PACS & DomainNet datasets
- PACS: Photo as source domain; DomainNet: Real as source domain

Method		PAC	S		DomainNet							
	Art painting	Cartoon	Sketch	Average	Clipart	Infograph	Painting	Quickdraw	Sketch	Average		
DeepAll	60.7	23.5	29.0	37.7	34.5	15.7	40.7	3.6	25.9	24.1		
JiGen [11]	63.6	28.5	30.2	40.8	50.0	19.0	46.3	7.2	35.5	31.6		
CrossGrad [6]	64.2	29.4	32.1	41.9	49.4	19.3	47.3	5.8	35.6	31.5		
DDAIG [7]	64.1	32.5	29.6	42.1	41.4	16.5	40.9	3.2	26.7	25.7		
M-ADA [41]	64.6	34.6	26.6	41.9	50.3	19.5	48.1	7.1	36.0	32.2		
Ours	$\textbf{68.2}\pm0.9$	$\textbf{36.3}\pm0.9$	$\textbf{33.5}\pm0.3$	46.0	52.2 ± 0.3	21.6 ± 0.2	$\textbf{50.1}\pm0.2$	8.1 ± 0.3	$\textbf{38.3}\pm0.4$	34.1		

Conclusion

- To directly deploy on target domains *without* the need of target data
- Not only derive the **domain-invariant features** across multiple source domains
- The **novel-domain augmentation** is designed to expand the training domain and diversify the training data distribution
- Our proposed approach *does not* require domain labels, thus can be applied on both multi-source and single-source DG settings

Adversarial Teacher-Student Representation Learning for Domain Generalization

Spotlight Presentation, NeurIPS 2021

Paper

Fu-En Yang f07942077@ntu.edu.tw Yuan-Chia Cheng r08942154@ntu.edu.tw Zu-Yun Shiau r09942069@ntu.edu.tw

Yu-Chiang Frank Wang ycwang@ntu.edu.tw

Thanks for listening!