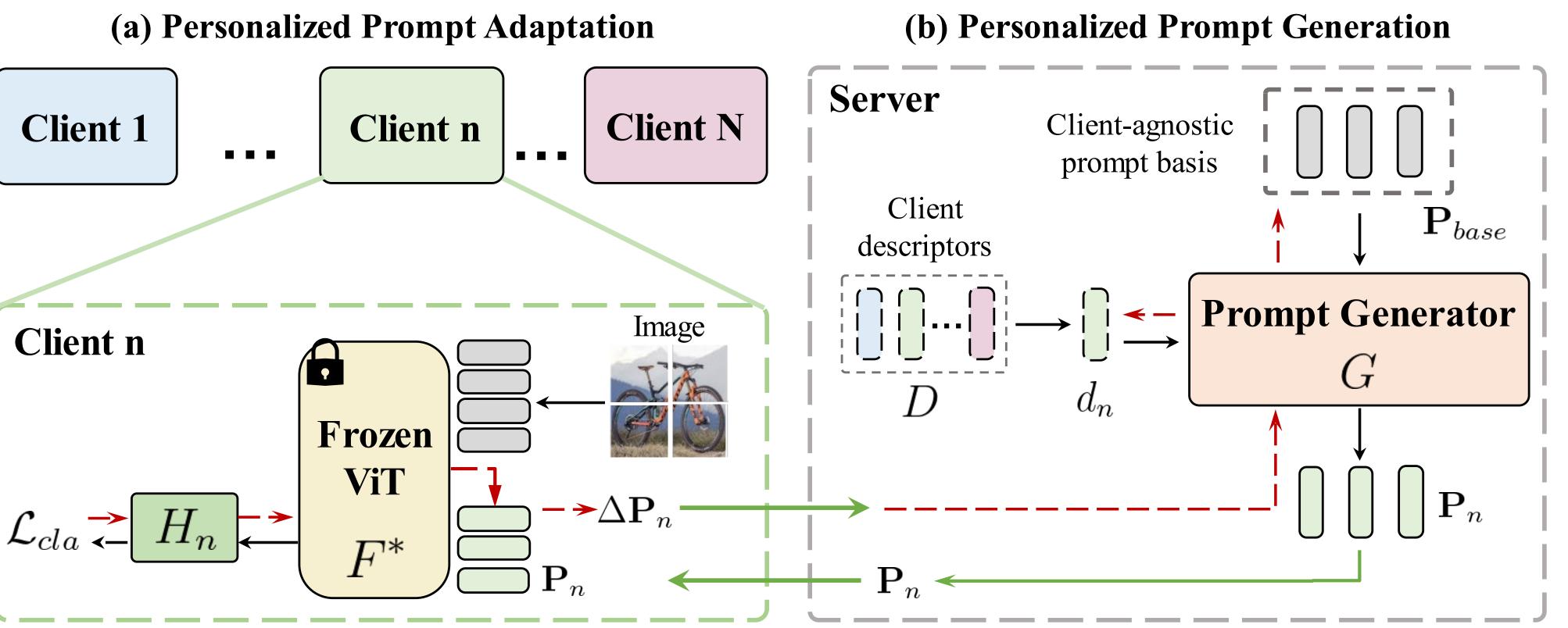


Introduction & Overview

Limited computational resources & communication bandwidth

- FedAvg updates/transports entire model parameters -> high comp./comm. Cost
- Hard to incorporate large-scale backbones (ViT)
- + We adopt prompt learning -> PEFT

Data heterogeneity exists among local clients (hospitals/edge devices)


- FedAvg simply averages models from clients that would not address data heterogeneity well
- + We learn to generate client-specific prompts for all local clients at the server

Efficient Model Personalization in Federated Learning via Client-Specific Prompt Generation

Fu-En Yang^{1,2} Yu-Chiang Frank Wang^{1,2} Chien-Yi Wang² ¹National Taiwan University $^{2}NVIDIA$

Personalized Federated Learning via Client-Specific Prompt Generation (pFedPG)

Quantitative Comparisons (Domain Shift & Imbalanced Class Distribution)

Datasets		Office	-Caltech	10 (%)				Dor	nainNet	(%)			Comm.	Datas	sets	CIFAR-10 (%)		CIFAR-100 (%)	
Method	Α	С	D	W	Avg.	С	Ι	Р	Q	R	S	Avg.	Cost	Meth	od	Disjoint	Dir(0.1)	1) Disjoint	Dir(0.1)
Baselines														Base	lines				
SingleSet-Full	80.73	73.33	90.62	94.92	84.90	47.34	37.14	67.21	55.30	84.88	45.13	56.17	-	Singl	eSet-Full	89.51	83.85	67.74	49.64
SingleSet-VPT [21]	83.33	74.67	96.88	96.61	87.87	57.98	41.55	74.64	59.60	89.56	60.47	63.97	-	Singl	eSet-VPT [21]	88.91	84.32	63.42	46.46
FedAvg [40]	89.58	80.44	100.0	100.0	92.51	63.50	38.05	71.89	60.80	78.55	60.47	62.21	8.58×10^7	FedA	vg [40]	88.04	79.79	63.33	51.37
Personalized Federat	ted Learn	ning												Perso	nalized Federate	ed Learnin	ıg		
Per-FedAvg [14]	91.67	90.22	100.0	100.0	95.47	69.39	48.71	82.07	35.30	90.63	72.56	66.44	$8.58 imes 10^7$	Per-F	edAvg [14]	88.13	85.14	69.31	52.68
FedRep [8]	91.15	88.44	100.0	100.0	94.90	64.26	38.20	72.86	62.10	82.66	60.11	63.37	8.58×10^7	FedR	ep [8]	87.07	82.40	65.71	50.36
FedRoD [4]	92.19	90.67	100.0	100.0	95.72	66.54	42.92	74.15	57.20	84.63	66.43	65.31	$8.58 imes 10^7$	FedR	oD [4]	87.61	80.36	63.90	51.42
FedBABU [37]	89.06	85.78	100.0	100.0	93.71	63.31	43.07	74.80	43.80	87.26	67.15	63.23	8.58×10^7	FedB	ABU [37]	83.15	76.33	55.91	50.19
Efficient Federated I	Learning													Effici	ent Federated L	earning			
FedVPT [21]	92.71	84.44	100.0	100.0	94.29	65.59	44.14	76.58	47.30	91.04	60.29	64.16	$7.68 imes 10^3$	FedV	PT [21]	89.39	85.11	55.49	45.26
FedVPT-D [21]	91.67	89.33	100.0	100.0	95.25	63.31	43.07	74.80	54.80	87.26	67.15	65.07	9.22×10^3	FedV	PT-D [21]	89.56	85.43	66.91	50.25
pFedPG (Ours)	94.79	92.44	100.0	100.0	96 . 81	73.00	50.08	84.33	60.00	94.00	68.41	71.64	7.68×10^3	pFed	PG (Ours)	90.08	87.57	70.96	55.91
		Modu	le		Metho	od O	ffice-Ca	ltech10	Doma	ainNet	CIFAR	k-10	CIFAR-100	\overline{K}	Office-Caltech	10 Doma	ainNet	CIFAR-10	CIFAR-100
blation Study		Prompt generation		FedVPT \mathbf{P}_{base}		94.29 93.16		64.16 64.87		89.39 88.23		55.49	1	96.09	70	.27	86.14	55.77	
												66.89	5	96.77	70	.53	87.41	55.79	
& Analys	sis	Architecture of G					04.06		62.22		07 17		66.73	10	96.81	71	.64	87.57	55.91
				MLP [44]		94.96		63.33		87.47			50		69	.55	85.63	54.52	
					AdaIN [20]		95.72		70.08		89.77		69.44	100	94.53	68	.79	85.02	53.61
					pFedP	G	96.8	81	71	.64	90.0	8	70.96	200	94.46	66	.83	83.53	52.34

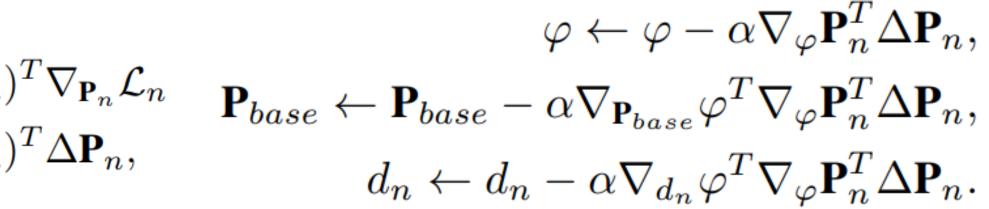
ts Office-Caltech10 (%)								Dor	nainNet	(0%)			Datas	ete	CIEAR	R-10 (%)	CIEAT	CIFAR-100 (%)	
		Office	-Calleen					Doi	namnet				Comm.						
1	A	С	D	W	Avg.	С	Ι	Р	Q	R	S	Avg.	Cost	Meth	od	Disjoint	Dir(0.1)	Disjoint	Dir(0.1)
ies														Base	lines				
Set-Full	80.73	73.33	90.62	94.92	84.90	47.34	37.14	67.21	55.30	84.88	45.13	56.17	-	Singl	eSet-Full	89.51	83.85	67.74	49.64
Set-VPT [21]	83.33	74.67	96.88	96.61	87.87	57.98	41.55	74.64	59.60	89.56	60.47	63.97	-	Singl	eSet-VPT [21]	88.91	84.32	63.42	46.46
g [40]	89.58	80.44	100.0	100.0	92.51	63.50	38.05	71.89	60.80	78.55	60.47	62.21	8.58×10^7	FedA	vg [40]	88.04	79.79	63.33	51.37
alized Federa	ted Learn	ing												Perso	nalized Federate	d Learnii	ıg		
lAvg [14]	0		100.0	95.47	69.39	48.71	82.07	35.30	90.63	72.56	66.44	8.58×10^7	Per-F	edAvg [14]	88.13	85.14	69.31	52.68	
b [8]	91.15	88.44	100.0	100.0	94.90	64.26	38.20	72.86	62.10	82.66	60.11	63.37	8.58×10^7	FedR	ep [8]	87.07	82.40	65.71	50.36
D [4]	92.19	90.67	100.0	100.0	95.72	66.54	42.92	74.15	57.20	84.63	66.43	65.31	$8.58 imes10^7$	FedR	oD [4]	87.61	80.36	63.90	51.42
BU [37]	89.06	85.78	100.0	100.0	93.71	63.31	43.07	74.80	43.80	87.26	67.15	63.23	8.58×10^7	FedB	ABU [37]	83.15	76.33	55.91	50.19
nt Federated I													Efficient Federated		earning				
T [21]	92.71	84.44	100.0	100.0	94.29	65.59	44.14	76.58	47.30	91.04	60.29	64.16	$7.68 imes 10^3$	FedV	PT [21]	89.39	85.11	55.49	45.26
T-D [21]	91.67	89.33	100.0	100.0	95.25	63.31	43.07	74.80	54.80	87.26	67.15	65.07	9.22×10^3	FedV	PT-D [21]	89.56	85.43	66.91	50.25
G (Ours)	94.79	92.44	100.0	100.0	96.81	73.00	50.08	84.33	60.00	94.00	68.41	71.64	7.68×10^3	pFedPG (Ours)		90.08	87.57	70.96	55.91
		Modu	le		Metho	od C	Office-Ca	ltech10	Doma	ainNet	CIFAR	R-10 (CIFAR-100	\overline{K}	Office-Caltech1	0 Dom	ainNet C	IFAR-10	CIFAR-100
tion Study		Deserve	Description			Υ	94.29		64.16		89.39		55.49	1	96.09	70	.27	86.14	55.77
		Prom	Prompt generation		\mathbf{P}_{base}		93.16		64.87		88.23		66.89	5	96.77	70	.53	87.41	55.79
Analys	sis		N					94.96		62.22		7	66.73	10	96.81	71	.64	87.57	55.91
		Archi	Architecture of G			MLP [44] AdaIN [20]		94.90 95.72		63.33 70.08				50	95.10	69.55		85.63 85.02	54.52 53.61
												7	69.44	100	100 94.53		.79		
					pFedP	G	96.8	81	71	.64	90.0	8	70.96	200	94.46	66	.83	83.53	52.34

Personalized Prompt Adaptation @clients

Personalized Prompt Generation @server

- optimization directions ($\Delta \mathbf{P}_n$):

```
\Delta \varphi = \nabla_{\varphi} \mathcal{L}_n = (\nabla_{\varphi} \mathbf{P}_n)^T \nabla_{\mathbf{P}_n} \mathcal{L}_n
                              \cong (\nabla_{\alpha} \mathbf{P}_n)^T \Delta \mathbf{P}_n
```



PARIS

• Leverage pre-trained Vision Transformer (ViT) as the backbone • Keep backbone frozen, only update prompts (\mathbf{P}_n) & classifier (H_n)

 $\mathcal{L}_{n} = \frac{1}{|\mathcal{D}_{n}|} \sum \mathcal{L}_{cla} \left(H_{n} \left(F^{*} \left([c, \mathbf{P}_{n}, \mathbf{z}_{j}] \right) \right), y_{j} \right)$

• Prompt Generator *G* generates personalized prompts for clients • All G, \mathbf{P}_{base} , and d_n are updated @server by the clients'

- Evaluations in *domain shift* & *imbalanced class distribution* verify that our pFedPG outperforms existing FL methods (+ 9%) Avg. over FedAvg on DomainNet).
- Our pFedPG exhibits sufficient training efficiency (0.01% parameters).

Conclusion

- We propose pFedPG to enable efficient model personalization under heterogeneous clients' data.
- We effectively exploit personalized optimization directions and produce client-specific prompts for updating each client model.