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Abstract—Learning interpretable data representation has been
an active research topic in deep learning and computer vision.
While representation disentanglement is an effective technique
for addressing this task, existing works cannot easily handle the
problems in which manipulating and recognizing data across
multiple domains are desirable. In this paper, we present a
unified network architecture of Multi-domain and Multi-modal
Representation Disentangler (M2RD), with the goal of learn-
ing domain-invariant content representation with the associated
domain-specific representation observed. By advancing adver-
sarial learning and disentanglement techniques, the proposed
model is able to perform continuous image manipulation across
data domains with multiple modalities. More importantly, the
resulting domain-invariant feature representation can be applied
for unsupervised domain adaptation. Finally, our quantitative
and qualitative results would confirm the effectiveness and
robustness of the proposed model over state-of-the-art methods
on the above tasks.

Index Terms—Representation disentanglement, image transla-
tion, domain adaptation, deep learning

I. INTRODUCTION

Recent advances in deep learning have shown promising
progresses in the areas of computer vision and machine
learning. In particular, visual analysis and synthesis across
data domains attract the attention from researchers in these
fields. For example, style transfer [1], [2], [3], [4], [5], image-
to-image translation [6], [7], [8], [9], [10], and cross-domain
visual classification (or domain adaptation) [11], [12], [13],
[14], [15] can all be viewed as the associated applications.

To address the above tasks, previous works typically either
learn a deterministic (i.e., unimodal) mapping from one data
domain to another, or to embed desirable information into
the resulting latent space to derive the data representation.
The technique of representation disentanglement [16], [17],
[18] particularly observes and manipulates specific feature
attributes of interest, which has also been applied in the
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Fig. 1. Illustration of multi-domain and multi-modal representation disentan-
glement. Given an input (in red bounding box) and images in multiple domains
(e.g., styles), we derive representations for describing domain-invariant and
domain-specific information, while images can be manipulated and recovered
in different domains with sufficient diversity. Note that Dsketch and Dpaint
denote domain-specific spaces for sketch and paint images, respectively.

above tasks. Thus, one can view the attributes of interest as
the meaningful factors inherent in image data, and further
synthesize preferable outputs accordingly. For instance, one
can manipulate the style attributes of the disentangled latent
feature to achieve style transfer and image-to-image translation
(e.g., photo ↔ sketch [19]).

In practice, adaptation or translation between data domains
needs to exhibit multi-modal diversity. That is, a single input
instance may correspond to diverse possible outputs, associ-
ated with the same attribute of interest (e.g., image style). Even
with the promising models based on generative adversarial
networks (GANs) [20], one might encounter mode collapse
problems and fail to produce multi-modal outputs. Recently,
MUNIT [21] and DRIT [22] utilize the disentangled represen-
tation for multi-modal translation, achieved by decomposing
the latent feature into disjoint features to describe content and
style information. While these models manipulate the style
feature to synthesize diverse outputs, they cannot be easily
extended to handle the image manipulation among multiple
(i.e., more than two) domains due to their network architecture
designs.

In this paper, we propose a unified framework of
Multi-domain and Multi-modal Representation Disentangler
(M2RD) for cross-domain image synthesis and classification,
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UFDN [26]
√ √ √ √ √ √

-
√

M2RD (Ours)
√ √ √ √ √ √ √ √

TABLE I
COMPARISONS WITH RECENT WORKS ON IMAGE TRANSLATION AND IMAGE MANIPULATION.

with the ability to manipulate image data with particular
attribute of interest while exhibiting sufficient diversity, as
illustrated in Fig. 1. Without collecting pairwise image data
across domains, our model encodes image data into a domain-
invariant and specific latent feature spaces. While the former
observes content information from the input data, the latter
exhibits multi-modal diversity during cross-domain image
translation. In the experiments, we not only show that our
model is able to perform image manipulation, but we fur-
ther verify that derived domain-invariant content features can
be applied to the task of unsupervised domain adaptation.
With both qualitative and quantitative results provided, the
effectiveness and robustness of our model can be successfully
confirmed.

We now highlight the contributions as follows:
• Our proposed deep learning model is able to factorize

latent image representations into disjoint features describ-
ing domain-invariant and specific information.

• Our network uniquely integrates adversarial learning,
representation disentanglement, and generative modules
in a unified architecture.

• Our derived domain-invariant feature representation al-
lows unsupervised domain adaptation, while the domain-
specific feature enables multi-modal image manipulation
across multiple data domains.

II. RELATED WORKS

Representation Disentanglement. Aims at learning
interpretable data representations ([16], [17], [18], [27],
[28], [29], [30], [31]), Chen et al. [16] proposed InfoGAN
to maximize the mutual information between the latent
features and generated images, which realizes representation
disentanglement in an unsupervised way. Similarly, Higgins et
al. [17] introduced β-VAE which derives such representations
by adding an adjustable hyperparameter to a variational auto-
encoder (VAE) [32], balancing the latent channel capacity and
the independence constraints. Tulyakov et al. [27] presented
MoCoGAN to learn motion and content decomposition
for video generation. Although the above methods realize
representation disentanglement without label supervision,

one cannot manipulate the latent factors directly since the
semantic meanings behind the disentangled factors cannot be
explicitly obtained. Thus, Odena et al. [18] augmented GANs
with an auxiliary classifier, allowing image outputs to be
conditioned on the desirable latent factors. Furthermore, Peng
et al. [30] applied reconstruction-based disentanglement and
self-supervision to guarantee completely decoupling of latent
factors, which benefits pose-invariant face recognition. Tran et
al. [28], and Liu et al. [29] proposed DR-GAN, and MTAN,
which derived pose-invariant feature via disentanglement
technique and adversarial learning to facilitate the face
recognition. Tian et al. [31] employed GAN and cycle-
consistency for disentangling latent features in multi-view
image manipulation. Despite significant progresses, most
existing works only focus on producing such representations
from a single data domain.

Image-to-Image Translation. To convert images from one
style to another, Isola et al. [6] chose to observe pairs of
images for learning GAN-based models. Taigman et al. [7]
presented Domain Transfer Network (DTN) to performed
such tasks by employing feature consistency across domains.
Without observing cross-domain image pairs, Zhu et al. [8]
learned the bidirectional domain mappings in pixel space
with a cycle consistency loss; similar ideas were also applied
by [33] and [34]. Coupled GAN (CoGAN) [9] binds high-
level information between two data domains for learning the
joint distribution. UNIT [10] is extended from CoGAN, which
integrates VAE and GAN to achieve image translation by
mapping the data between two domains to the same latent
space. While the above methods produce promising results,
they cannot provide diverse outputs due to their model designs
or issues like model collapse.

For multi-modal translation, Zhu et al. [24] observed pairs
of images for deriving bijection mapping between the latent
and output spaces. Gonzalez-Garcia et al. [25] decomposed
the paired inputs into disjoint shared and exclusive parts
to perform diverse image-to-image translation between two
domains. Recently, Huang et al. [21] and Lee et al. [22]
concurrently proposed MUNIT and DRIT respectively.
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MUNIT and DRIT both factorize the latent representations
into domain-invariant content feature and domain-specific
style feature from unpaired data. However, their model
designs limit the use of data across multiple domains.

Cross-Domain Image Manipulation. In addition to image-
to-image translation, several recent works [19], [35], [36],
[26] further address image synthesis tasks with the ability of
manipulating the attributes of interest. For example, Liu et
al. [19] considered cross-domain disentangled representation
with supervision from single-domain data which aims to
manipulate the desirable attributes across different domains.
However, they can only deal with a pair of data domains using
the proposed model. To handle such tasks across multiple
domains, Choi et al. [35], He et al. [36], and Liu et al. [26]
proposed StarGAN, AttGAN, and UFDN respectively, which
all perform multi-domain image-to-image translation by
manipulating the domain label directly. Although StarGAN
allows training of multiple domains simultaneously by
the unified model structure, it does not exhibit ability in
disentangling desirable latent representation. Nevertheless,
while the above models are able to manipulate face images,
our model further allows one to perform image-to-image
translation on a variety of images including images of faces
and natrual sccenes. Most importantly, all of them cannot
allow multi-modal outputs, which might not be desirable for
practical uses.

Unsupervised Domain Adaptation (UDA). Domain adap-
tation [37], [38], [11], [12], [13], [15] addresses the same
learning tasks across domains, with the goal of eliminating
the domain shift (i.e., dataset bias). And, unsupervised domain
adaptation (UDA) specifically deals with the scenario in which
no label supervision is available during training in the target
domain. For instance, GAKT [37] applied adaptive graph
to transfer discriminative information from labeled source to
unlabeled target domain. Also, Ding et al. [38] integrated low-
rank coding with deep neural network for preserving global
structures across source and target, to achieve more effective
knowledge transfer. Recently, several GAN-based methods
have been proposed for UDA. For example, Ganin et al. [11]
introduced a Domain Adversarial Neural Network (DANN)
framework which contains a domain classifier with its gradient
reversal layer serving as a domain-invariant feature extractor.
Tzeng et al. [12] adapted feature extractors and classifier
of source and target domains by domain adversarial learn-
ing strategies to tackle UDA. Bousmalis et al. [13] utilized
the decomposed representations to produce domain-invariant
features to facilitate cross-domain classification. Hoffman et
al. [15] further extended CycleGAN [8] and applied adversar-
ial learning and cycle-consistency for both feature and pixel-
level adaptation.

Nevertheless, the above models typically do not exhibit
abilities in disentangling particular image attributes, nor to
manipulate image outputs across domains with multi-modal
diversity. In Table I, we compare our proposed model with
recent deep learning methods in the aforementioned topics.

III. MULTI-DOMAIN AND MULTI-MODAL
REPRESENTATION DISENTANGLER (M2RD)

A. Notation and Model Overview

Given an image set {Xi}Ni=1 across N distinct domains,
our M2RD jointly learns a domain-invariant content feature
{zci }Ni=1 and domain-specific feature {zdi }Ni=1 from the input
image xi ∈ Xi, and then utilize discrete domain code {li}Ni=1

to further exploit the domain information in the latent space.
We note that the domain code li can be implemented by
an one-hot vector, a real-value vector, or even concatenation
of multiple one-hot vectors, which describes the domain of
interest.

As illustrated in Fig. 2, our framework consists of two
network modules. First, we have a representation disentangler
with a content discriminator. This module contains a content
encoder Ec and a domain encoder Ed, which are shared by
input data across different domains. By advancing adversarial
learning strategies, this disentangler module allows us to derive
domain-invariant and specific features. The former provides
the content information of the input data disregard of its
domain of origin, while the latter describe the domain of
interest, which allows multi-modal manipulation as described
later.

On the other hand, we have a Multi-domain and Multi-
modal Generative Adversarial Networks as the second network
module in Fig. 2, which includes a generator G and a domain
discriminator Ddom, while the same content encoder Ec is
deployed to observe content consistency. With the observed
domain-invariant content feature zc, this module performs both
multi-domain and multi-modal image translation by manipu-
lating the derived domain-specific feature zd and the domain
code l. The details of our proposed network will be discussed
in the following subsections.

B. Representation Disentangler
As illustrated in Fig. 2, our proposed network encodes cross-

domain image inputs using shared content encoder Ec and
domain encoder Ed. To enable the encoded content features
to be domain-invariant, we apply a content discriminator Dc
to eliminate the domain differences between the resulting
features inspired by [11]. In other words, we have Dc aim to
correctly produce domain code prediction l̂ from the encoded
content features zci . Thus, the objective function of this content
discriminator LDc

adv is derived as follows:

LDc
adv = E[log(P (l̂ = li|Ec(xi)))], (1)

where P is the probability distribution over domains l̂, which
is calculated by the content discriminator Dc.

With the above design, our content encoder Ec would be
able to extract the domain-invariant content features from input
data, which are observed across multiple domains. As a result,
the objective function of the encoder Ec is to maximize the
cross-entropy of the content discriminator:

LEc
adv = −LDc

adv = −E[log(P (l̂ = li|Ec(xi)))]. (2)

Finally, in order to learn a joint and continuous represen-
tation for cross-domain data, and further perform stochastic
sampling in testing phase, we enforce the Kullback-Leibler
divergence for our generative network model. This encourages
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Fig. 2. The network architecture of our Multi-domain and Multi-modal Representation Disentangler (M2RD), which consists of two modules: 1) Representation
disentangler, composed of a content encoder Ec, a domain encoder Ed, and a content discriminator Dc, and 2) Multi-domain and Multi-modal GAN consisting
of a generator G, and a domain discriminator Ddom with an auxiliary domain classifier. Note that zc, zd denote the domain-invariant and specific features
extracted from different domains respectively. Together with a domain code l, the final feature representation z = [zc, zd, l] can be utilized for cross-domain
and multi-modal image manipulation.

the domain-specific feature zd to fit a prior Gaussian distribu-
tion N(0, I). Thus, the objective LKL is calculated as:

LKL = E[KL(Ed(xi)||N(0, I))] (3)

We note that, derivation of the above domain-invariant
content representation is the reason why we can apply such
features for unsupervised domain adaptation (UDA), which
desires a common feature representation shared by different
domains for adaptation purposes. With the above network
design, we enforce the derived content features zc does not
contain any domain information, and thus the domain shift can
be properly suppressed. As a result, we can simply deploy an
extra classifier based on zc if the UDA is of interest. To be
more precise, the objective Lcla for this added UDA classifier
can be expressed as follow:

Lcla = −
Nsrc∑
k=1

ysrck · log ỹsrck . (4)

where ỹsrck is the predicted output from the k-th labeled source
input, and ysrck is the ground truth label.

C. Multi-domain and Multi-modal GAN

Once the domain-invariant feature zc and the domain-
specific ones zd are observed, the second module in our
proposed architecture performs multi-domain and multi-modal
image translation (i.e., cross-domain image manipulation with
multi-modal diversity). We now discuss how these two tasks
are jointly performed.

Similar to most existing image translation works, we per-
form image synthesis by combining the derived content feature

zc and with the domain feature zd. Extended from AC-
GAN [18], we additionally assign the domain code l into the
above feature representation to form the final feature repre-
sentation z = [zc, zd, l], followed by the decoding process.

Recall that, the representation zd is learned to describe
domain-only information, while such representation is shared
by cross-domain data inputs. Thus, with the sampling strate-
gies noted in Section III-B, we will be able to reconstruct
the image output and exhibit multi-modal diversity. In other
words, within-domain variants of the recovered output asso-
ciated with the same content feature zc can be produced via
sampling zd. And, the above domain code l is added to ensure
that the output image is recovered at or translated into the
domain of interest. This is how our proposed model differs
from existing image translation or disentanglement works.

With the above explanations, we now define the object
functions applied in this network module. First, for image
recovery guarantees, we calculate the reconstruction loss Lrec
for the reconstructed image x̂i:

Lrec = ||xi − x̂i||1, (5)

Note that xi is the (ground truth) input, and x̂i =
G([zci , z

d
i , li]).

Inspired by DTN [7], we further preserve the content
consistency between translated images x̃i and input image xi.
Thus, an objective function Lcon based on the same content
encoder Ec is introduced in the feature level, which can be
formulated as:

Lcon = ||Ec(xi)− Ec(x̃i)||2, (6)

where x̃i = G([zci , z
d
j , lj ]), i 6= j.
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Fig. 3. In addition to the architecture described in Fig. 2, we further apply the
objective function Lsty to enforce the reconstruction on the domain-specific
feature. More details can be found in Section III-C

Also, similar to DRIT [22], we utilize style regression loss
to enforce the reconstruction on the domain-specific feature,
as illustrated in Fig. 3, with the objective Lsty expressed as:

Lsty = ||Ed(G([zci , z̄
d, lj ])))− z̄d||2, (7)

where z̄d is sampled from a prior Gaussian distribution
N(0, I).

However, when manipulating images across domains using
the above network module, there is no guarantee that the
output image x̃i would properly satisfy the domain information
based on the domain code l inserted. Thus, as a part of the
AC-GAN extension, we deploy a domain discriminator Ddom

in Fig. 2 which perform multi-task learning for combining
adversarial learning with an auxiliary domain classification
task.

To be more precise, this discriminator not only determines
the authenticity of the output images, it also classify its
domain label output to enforce the ability of the introduced
domain code for domain disentanglement. Thus, the objective
functions of this domain discriminator Ddom and generator G
are calculated as follows:

LDdom
adv = E[log(Ddom(x̃i))] + E[log(1−Ddom(xi))], (8)

LDdom
aux = E[log(P (l̄ = lj |x̃i))] + E[log(P (l̄ = li|xi))], (9)

LGadv = −E[log(Ddom(x̃i))], (10)

where l̄ denotes the prediction output of Ddom. We note that
the objective LDdom

aux aims at maximizing the mutual informa-
tion between the domain code and the translated image [16].

D. Full Objectives

In summary, the full objective function L of our model can
be summarized below:

L = λ1LDc
adv + λ1LEc

adv

+ λ2(LDdom
adv + LDdom

aux ) + λ2LGadv
+ λrecLrec + λconLcon
+ λKLLKL + λstyLsty + λclaLcla,

(11)

where the hyperparameters λ regularize each loss term. Nev-
ertheless, we fix the values of λ for each dataset, and do not
fine-tune them for each input instance.

To train our model, we alternatively update content encoder
Ec, domain encoder Ed, generator G, content discriminator
Dc, and domain discriminator Ddom via the following gradi-
ents:

θEc

+←− −∆θEc
(Lrec + LEc

adv + Lcon + Lsty)

θEd

+←− −∆θEd
(Lrec + LKL)

θG
+←− −∆θG(Lrec + Lcon + LKL + LGadv + LDdom

aux + Lsty)

θDc

+←− −∆θDc
(LDc

adv)

θDdom

+←− −∆θDcom
(LDdom

adv + LDdom
aux ).

(12)
We note that, if UDA is of interest, an additional classifier (as
discussed in Section III-B) will be added with loss Lcla. Thus,
the gradient of θEc

is derived as follows:

θEc

+←− −∆θEc
(Lrec + LEc

adv + Lcon + Lsty + Lcla). (13)

Once the training is complete, our model can be applied to
image translation in the following ways:
1) For an input image, we utilize the content encoder Ec to
extract its content feature. By conditioning on a randomly
sampled domain-specific feature with a selected domain code
li, generator G would manipulate and output the image in the
domain of interest.
2) Give two images of interest, we extract the content feature
zci from one image, and the domain-specific feature zdj from
another (together with its domain code lj). This can be viewed
as example-guided image translation.

It is worth noting that, our disentangled representations are
achieved by jointly minimizing domain confusion loss (LDc

adv ,
LEc

adv), reconstruction loss Lrec, content consistency loss Lcon,
and style regression loss Lsty . Specifically, we explicitly de-
rive the domain-invariant content feature from input images via
domain confusion loss (LDc

adv , LEc

adv) in an adversarial manner,
allowing our content encoder Ec to extract domain-invariant
features. Moreover, we have the content and style consistency
losses (Lcon and Lsty) deployed in our architecture; the former
ensures that the input and the translated images preserve the
same content feature representation, while the latter enforces
the transformed output to be of the style of interest. Finally,
the reconstruction loss Lrec is applied to jointly observe the
aforementioned disentangled representation with data recovery
guarantees. In Table III, we have ablation studies to support the
design of our proposed network in performing representation
disentanglement.

Also, as shown in Fig. 4, 6, 9, we show that our proposed
model is able to derive disentangled representations from input
images of the seen domains and producing diverse outputs in
the seen domain of interest during inference time. We note
that, existing state-of-the-art image translation models via rep-
resentation disentanglement (e.g., UNIT [10], E-CDRD [19],
MUNIT [21], DRIT [22], UFDN [26]) cannot generalize to
images in unseen domains. This also verifies that our model
exhibit excellent abilities in decoupling content and style-
dependent features for image translation.

E. Comparisons to Recent Models

It is correct that, while our model is related to a recent
multi-domain image translation method of UFDN [26], and



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. -, NO. -, OCT. 2019 6

Fig. 4. Example results of our multi-modal image translations and the comparison with the existing image-to-image translation methods. We observe that
our model is able to generate high-quality images with meaningful diversity.

Fig. 5. Example results of the comparison with UFDN [26] in summer-
to-winter translation. Note that since UFDN [26] does not observe and
exhibit intra-domain image variety, its output might be irrational in terms
of appearance or lighting (e.g., mix of daytime and nighttime appearance),
while ours are more realistic and have a higher visual quality.

a number of network modules are shared by this work and
ours, multi-modality is the major highlight of our work, plus
the introduced feature-level consistency to improve the output
image quality. As we noted in Table I, our M2RD further
exhibits multi-modal property during the translation/synthesis
process, which cannot be achieved by UFDN [26]. However,
such extension is not trivial. First, our M2RD needs to de-
rive disjoint domain-specific features (zd) from the domain-
invariant features zc at the output of the domain encoder (Ed).
With detailed model and loss designed are described in our
work, we then fit such disentangled domain-specific features
to Gaussian distribution priors, allowing the learning of multi-
modality in image translation. As discussed, the domain code
(l) in our model serves as supervision, which guides our

unified generator to synthesize the output image in the domain
of interest. In contrast, UFDN [26] can only perform one-
to-one image translation without diversity. In Fig. 4 and
Table II, we present qualitative and quantitative comparisons
respectively to confirm the capability of our M2RD to translate
images across multiple domains with sufficient diversity.

Second, we consider to exploit both inter-domain and intra-
domain variation during image translation, while UFDN [26]
only observes inter-domain variation. As shown and com-
pared in Table II, the lack of the ability in modeling intra-
domain diversity would lead to a discernible drop in visual
quality. Take Fig. 5 for examples, the domain change in
seasons would be viewed as inter-domain variations, while the
day/night lighting, etc. condition changes are modeled as intra-
domain variations. Without our derivation of domain-specific
features zd, one cannot produce translated image outputs with
satisfactory quality, generating winter scenes with irrational
or unrealistic lighting conditions (and thus poor user study
results, as shown and compared in Table II).

Third, we employ cycle-consistency loss in our model for
feature consistency guarantees, while UFDN [26] does not
include such constraints and thus suffers from drops in visual
quality in performing image translation. To be more precise,
we utilize content consistency to preserve content information
during the generation process, instead of directly applying
pixel-level consistency as used in DRIT [22]. Throughout our
experiments, we observe that adding data recovery constraints
over pixel levels would be overly restrictive and limit the
diversity of the image outputs. With the above observations
and as summarized in Table II, we show that our model
achieved higher LPIPS (O2O) score than DRIT [22] did, which
supports the effectiveness of our model in preserving content
consistency during image translation. With the above remarks,
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MUNIT DRIT UFDN M2RD (Ours)

Realism
User Study (↑) 21.17% 18.17% 19.33% 41.33%

FID (↓) 85.09± 0.77 68.44± 0.75 87.69± 0.70 57.76± 0.23
LPIPS (I2O) (↓) 0.417± 0.003 0.385± 0.002 0.758± 0.002 0.339± 0.003

Diversity LPIPS (O2O) (↑) 0.225± 0.002 0.173± 0.002 0.040± 0.001 0.196± 0.003

TABLE II
QUANTITATIVE COMPARISONS FOR VISUAL REALISM AND DIVERSITY WITH MUNIT, DRIT, UFDN, AND OUR M2RD ON SUMMER-TO-WINTER

TRANSLATION.

we believe the technical contributions of this work would be
sufficiently unique, which makes our work very different from
UFDN [26].

IV. EXPERIMENTS1

A. Implementation Details

We utilize PyTorch [39] to implement our model and choose
ADAM [40] as the optimizer to train our network, with the
learning rate, β1, and β2 set as 10−4, 0.5, and 0.999, respec-
tively. In our all experiments, we set the hyperparameters as
follows: λ1 = 1, λ2 = 1, λrec = 10, λcon = 1, λKL = 10−3,
λsty = 10, and λcla = 1.

More details about the network architecture for Summer
↔ Winter and Photo ↔ Art datasets are described in the
following.

For content encoder Ec, we apply convolutional architec-
ture composing of three convolution layers and four residual
blocks. For domain encoder Ed, we implement it by utilizing
four convolution layers followed by a fully-connected layer.
Also, we use four residual blocks, followed by three deconvo-
lution layers to realize generator G. For content discriminator
Dc, it consists of five fully-connected layers. For domain dis-
criminator Ddom, we utilize the architecture of PatchGANs [6]
that contains six convolution layers, and add two convolution
layers for outputting real/fake and domain code prediction
respectively.

B. Datasets

We consider four different categories of image datasets, i.e.,
digit, face, seasons, and art paint, for performance evaluation:

Digits. The image datasets of MNIST, USPS and Street View
House Number (SVHN) are hand-written digit image datasets,
which are viewed as images observed in different domains.
MNIST contains 60,000/10,000 images for training/testing,
and USPS consists of 7,291/2,007 images for training/testing.
SVHN is composed of colored digits images with complex
background and contains 73,257 training images, 26,032
testing images, and 531,131 extra images. All images are
converted to RGB images with the size of 32 × 32 × 3 pixels
for our experiments.

Faces. We consider facial photo, sketch, and paint images as
data in different domains. For facial photo images, we consider
the CelebFaces Attributes dataset (CelebA) [41], which is
a large-scale face image dataset including more than 200K

1The authors from National Taiwan University completed the experiments
on the datasets.

Fig. 6. Example results of multi-modal image translation for face images
across multiple domains.

celebrity photos annotated with 40 facial attributes. Following
the settings of [6], [19], [26], we randomly transfer half of the
photos to sketch, then convert the remaining photos into paint
images.

Summer ↔ Winter. The Summer ↔ Winter dataset [8]
contains natural scene images categorized into summer or
winter. The size of all images is 256 × 256 × 3 pixels, and the
numbers of images are 1273 and 854 for summer and winter,
respectively.

Photo ↔ Art. We choose the photo from Yosemite [8] and
the Art dataset [42] which collected from Wikiart containing
14 different artists. We conduct our experiments on Monet,
Van Gogh, and Ukiyo-e, and also resize all images into 256
× 256 × 3 pixels.

It is worth noting that, while image data across multiple
domains are presented during the training stage, we do not
observe any cross-domain image pairs when learning our
proposed model. This is different from recent translation
models like [6], [24] with such requirements.
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Fig. 7. Example results of image translation across multiple domains among photo/sketch/paint.

Fig. 8. Example results of our multi-domain image translations and manipulations. (a) Selected images from three different domains. (b) The horizontal
axis shows the cross-domain style interpolation for facial photo/sketch/paint, while the vertical axis verifies that the domain-invariant content feature space is
continuous.

C. Multi-domain and Multi-modal Image Translation
and Manipulation

1) Multi-modal image manipulation: In order to provide di-
versity in the produced image outputs, we first manipulate the
latent feature space by sampling the domain-specific feature
from a prior Gaussian distribution, concatenated by a desired
one-hot domain code. Example results are shown in Fig. 4
on summer ↔ winter dataset and Fig. 6 on face dataset, in
which multiple outputs in each domain can be produced based
on the same input image. Specifically, in Fig. 4, we compare
our M2RD with the state-of-the-art image-to-image translation
methods, showing that our M2RD is capable of synthesizing
high-quality output images with diversity. We observe that
only injecting noise vectors to the generator of CycleGAN [8],
which originally focuses on one-to-one image translation,
cannot produce diverse outputs. While UFDN [26] translates
images across multiple domains, the generated images mainly
belong to one mode and fail to synthesize multi-modal images.

Comparing with DRIT [22] and MUNIT [21], DRIT also
generates plausible results, and MUNIT produces images with
unrealistic style. We also demonstrate that our model without
content discriminator (Dc) cannot preserve domain-invariant
information well, causing unrealistic and ill-quality results.
From the above experiments, the use of our proposed M2RD
for multi-modal image translation can be successfully verified.

In addition to qualitative results and comparisons, we further
provide additional quantitative comparisons with MUNIT [21],
DRIT [22], and UFDN [26], which are known as the state-of-
the-art models on image translation.

To assess the visual quality and realism of the synthesized
images, we adopt Frechet Inception Distance (FID) [43] and
Learned Perceptual Image Patch Similarity (LPIPS) [44] as
the metrics for quantitative evaluation. We compute FID to
measure the distance between the generated distribution and
the real image input, and we also calculate average Input-
to-Output LPIPS, denoted as LPIPS (I2O), to measure the
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Fig. 9. Example results of our multi-domain and multi-modal image translations. We translate the input photos into another Paint style by manipulating the
domain code. Further, by randomly sampling distinct noise vectors, we are able to synthesize output images in the domain of interest with multi-modality.

Fig. 10. Example results of linear interpolation between two sampled random vectors both on Simmer ↔ Winter and Photo ↔ Art dataset.

distance between the input image and its corresponding trans-
lated outputs (note that lower scores indicate outputs with
better visual quality). In addition, we conduct studies by

asking 30 users with diverse backgrounds and knowledge with
20 questions, each contains a given input image and four
translated images generated by the above models (including
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w/o Dc w/o Ddom w/o Lcon w/o Lsty w/o LKL M2RD (Ours)

Realism FID (↓) 60.35± 0.56 444.48± 3.71 73.76± 0.97 68.65± 0.82 99.24± 1.37 57.76± 0.23
LPIPS (I2O) (↓) 0.354± 0.002 0.976± 0.003 0.364± 0.002 0.347± 0.002 0.397± 0.003 0.339± 0.003

Diversity LPIPS (O2O) (↑) 0.136± 0.002 0.067± 0.004 0.187± 0.002 0.107± 0.001 0.158± 0.002 0.196± 0.003

TABLE III
ABLATION STUDIES ON SUMMER TO WINTER TRANSLATION.

ours), and the user is asked to select the one which he/she
feels to be most appropriate/realistic. In Table II, we show
that our M2RD outperformed the aforementioned state-of-the-
art multi-modal or multi-domain image translation models in
all categories. With this experiment, we confirm that our model
is capable of producing output images with satisfactory visual
quality.

In addition to visual realism, we provide quantitative
comparison for visual diversity by calculating average
Output-to-Output LPIPS, denoted as LPIPS (O2O), to
measure the distance between the outputs translated from the
same input image (note that larger distance values represent
output images with more diversity). As shown in Table II, we
see that despite UFDN [26] is capable of translating images
across multiple domains, it cannot achieve multi-modal image
translation (with the lowest LPIPS score). More importantly,
our model was shown to perform favorably against DRIT [22]
and MUNIT [21], which support the ability of our model
in synthesizing plausible outputs with sufficient multi-modal
diversity. With the above quantitative comparisons, the
robustness and superiority of our model can be successfully
verified.

2) Multi-domain image manipulation: We demonstrate the
ability of our model in realizing image translation across
multiple domains using face dataset. Given images from an
arbitrary domain (i.e., top row in Fig. 7), we extract their
domain-invariant and domain-specific features, respectively.
For translation purposes, we assign and concatenate the above
features with different domain codes of interest (e.g., [1, 0,
0] for photo, [0, 1, 0] for sketch, and [0, 0, 1] for paint) for
image reconstruction. The translated results were shown in
each corresponding column in the bottom row of Fig. 7.

Then, given images from different domains (i.e., photo,
sketch, and paint in Fig. 8a), we extract their domain-invariant
(content) features and domain-specific (style) features. Then,
we perform feature interpolation within the same feature type.
Using the resulting content/style features with an interpolated
domain code, we are able to produce cross-domain image
translation outputs. As shown in Fig. 8b, outputs in vertical and
horizontal axes represent image variants in (domain-invariant)
content and (domain-specific) style with the associated domain
code, respectively. Observing the diagonal entries of Fig. 8b,
which shows the extremely translation case, and fully exhibit
the effectiveness and robustness in the derived feature repre-
sentations for multi-domain image manipulation.

In addition to faces, we also demonstrate the use of our
model for manipulating hand-written digit images. As shown
in Fig. 11a and b, by manipulating the domain-specific

Fig. 11. Cross-domain continuous image manipulation for (a) USPS →
MNIST and (b) SVHN → MNIST.

feature with the desirable domain code (e.g., [1, 0] for
USPS/SVHN, and [0, 1] for MNIST), our model are able
to convert the USPS and SVHN images into MNIST ones.
The above experiments of the use of our proposed M2RD for
multi-domain image manipulation are supportive.

3) Multi-modal translation across multiple domains: As
shown in Fig. 9, we conduct the experiment of multi-modal
image translation across multiple domains on Photo ↔ Art
dataset. By manipulating the domain code (e.g., [0, 0, 0,
1] for Photo, [0, 0, 1, 0] for Monet, [0 , 1, 0, 0] for Van
Gogh, and [1, 0, 0, 0] for Ukiyo-e), our M2RD is capable
of translating given images to the domain of interest. We
show that our model successfully captures different Painting
style and presents clearly distinct results. Furthermore, by
randomly sample different noise vectors from prior Gaussian
distribution, we are able to model the intra-domain variation
and perform multi-modal diversity.

For further evaluate the domain-specific (style) latent
space derived by M2RD, we perform linear interpolation
between two sampled style feature as shown in Fig. 10. The
corresponding results both on Summer ↔ Winter and Photo
↔ Art dataset change smoothly and continuously along with
the variations of style latent feature.

4) Quantitative Ablation Study: In addition to the qualita-
tive ablation study (i.e., Fig. 4) which partially performs such
ablation studies (i.e., our model with and without Dc), we now
present additional quantitative ablation studies in Table III to
verify the technical contributions of our work.

As shown in Table III, our model surpassed others in terms
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MNIST → USPS USPS → MNIST SVHN → MNIST
DANN [11] - - 73.85

Associative DA [14] - - 93.71
DSN [13] - - 82.70
DTN [7] - - 84.88

PixelDA [45] - 95.9 -
DRCN [46] 91.80 73.70 82.00
CoGAN [9] 95.65 93.15 -
ADDA [47] 89.40 90.10 76.00
UNIT [10] 95.97 93.58 90.53

CyCADA [15] - - 90.08
ADGAN [48] 92.80 90.80 92.40
CDRD [19] 95.05 94.35 -

SBADA-GAN [49] 97.6 95.0 76.1
UFDN [26] 97.13 93.77 95.01

M2RD (Ours) 98.54 98.49 94.03

TABLE IV
A CLASSIFICATION ACCURACY (%) FOR TARGET DOMAIN IMAGES. FOR
EXAMPLE, USPS→ MNIST DENOTES USPS AND MNIST AS SOURCE

AND TARGET DOMAIN IMAGES, RESPECTIVELY.

of all metrics of FID and LPIPS scores, which confirms the
visual quality and diversity achieved by the full model of
our M2RD. We observe that, without content discriminator
Dc, all scores became inferior since the derived features from
content encoder Ec will not be domain-invariant and would
carry the domain-specific information, even with the presence
of domain-specific feature zd and domain code l. This supports
our network/loss designs for representation disentanglement.
Moreover, without domain discriminator Ddom, all scores
were degenerate significantly due to image details of the
outputs across different domains cannot be properly preserved.
Next, when the content consistency loss Lcon was disabled,
the content information would not be preserved well, resulting
in poor visual quality and inferior FID/LPIPS scores. If the
style regression loss Lsty was removed, we were not able
to ensure the style information could be contained well in
domain-specific features zd, and thus lead to lower LPIPS
(O2O) scores (i.e., images with poor diversity). Without LKL,
we were not able to enforce the encoded domain-specific
features to fit the prior Gaussian distribution, and thus failed
to exhibit the multi-modal ability in cross-domain image
translation. As a result, all the scores based on image realism
and diversity dropped drastically. With the above quantitative
ablation studies, we confirm the effectiveness and robustness
of our M2RD in performing multi-modal image translation
across multiple domains.

D. Unsupervised Domain Adaptation

Finally, we apply our model for cross-domain classifica-
tion. More specifically, we consider the challenging task of
unsupervised domain adaptation (UDA), which aims at clas-
sifying images in the target domain while the labels are only
available in the source domain during training. We conduct
the UDA experiments using the handwritten digit datasets.
For instance, MNIST → USPS indicates the use of MNIST
as source-domain labeled data, while USPS is in the target
domain without any categorical information. As mentioned
in Section III-B, UDA can be achieved by our model by
adding an extra classifier to recognize the disentangled content
features. This classifier is jointly trained with our M2RD.

Fig. 12. t-SNE visualization of the handwritten digit data for USPS →
MNIST. Note that different colors indicate data of (a) different digits classes
0-9 and (b) different domains (source/target).

Table IV compares the results of our model with recent
translation-based UDA approaches. For MNIST → USPS,
we achieved improved performances over the state-of-the-art
methods, and our model performed favorably against others
in USPS → MNIST. As for SVHN → MNIST, which is
considered to be a more difficult scenario due to signifi-
cant differences in background, stroke, and illumination, very
promising results were reported by our proposed model as
well.

In addition to quantitative evaluation, we further provide
visualization results to further assess the UDA ability using our
derived features. As shown in Fig. 12, we visualize domain-
invariant representations of USPS → MNIST using t-SNE.
To be more precise, Fig. 12a illustrates the image data of
10 categories which were properly separated, while Fig. 12b
shows the same data associated with different domains (which
are close to each other with reduced domain differences).

V. CONCLUSIONS

In this paper, we proposed a unified deep learning model
of Multi-domain and Multi-modal Representation Disentangler
(M2RD). This unique network architecture addresses image
manipulation and recognition across multiple domains by
properly disentangling feature representation of interest. As
a unique characteristics, multi-modal diversity is introduced
into our proposed model, which realizes multi-modal image
translation during the image manipulation process. In our
experiments, we successfully verified that our model produced
promising multi-domain and multi-modal image manipulation
results using face, seasons, paints, and handwritten digit data,
and can be applied to solve unsupervised domain adaptation
with satisfactory accuracy.
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